Answer:
search it up see if you could find the answer
Step-by-step explanation:
search it up
Answer:
Y' = 360ex+ 30e
Step-by-step explanation:
Y=e×6x×(6x+1) × 5
y'= d/dx (e×6x ×(6x+1)×5)
y'=d/dx(30ex ×(6x+1))
y'=d/dx(180ex^2 + 30ex)
y'=d/dx(180ex^2) + d/dx (30ex)
Calculate the derivative
y'=180e×2x +30e
y'=360ex+30e
One function you would be trying to minimize is
<span>f(x, y, z) = d² = (x - 4)² + y² + (z + 5)² </span>
<span>Your values for x, y, z, and λ would be correct, but </span>
<span>d² = (20/3 - 4)² + (8/3)² + (-7/3 + 5)² </span>
<span>d² = (8/3)² + (8/3)² + (8/3)² </span>
<span>d² = 64/3 </span>
<span>d = 8/sqrt(3) = 8sqrt(3)/3</span>