1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
14

URGENT!! A 0.057 kg tennis ball and a tennis racket collide. The racket has an initial

Physics
1 answer:
babunello [35]3 years ago
7 0

Answer:

a

Explanation:it is a

You might be interested in
Therese plays lacrosse, but she has injured her ankle and has to take a few weeks off. She is finding that she has a lot of trou
vivado [14]

Answer: No endorphins

Explanation: cuz' she injured her ankle

6 0
3 years ago
A 0.750kg block is attached to a spring with spring constant 13.5N/m . While the block is sitting at rest, a student hits it wit
vazorg [7]

Answer:

A)A=0.075 m

B)v= 0.21 m/s

Explanation:

Given that

m = 0.75 kg

K= 13.5 N

The natural frequency of the block given as

\omega =\sqrt{\dfrac{K}{m}}

The maximum speed v given as

v=\omega A

A=Amplitude

v=\sqrt{\dfrac{K}{m}}\times A

0.32=\sqrt{\dfrac{13.5}{0.75}}\times A

A=0.075 m

A= 0.75 cm

The speed at distance x

v=\omega \sqrt{A^2-x^2}

v=\sqrt{\dfrac{K}{m}}\times \sqrt{A^2-x^2}

v=\sqrt{\dfrac{13.5}{0.75}}\times \sqrt{0.075^2-(0.075\times 0.75)^2}

v= 0.21 m/s

5 0
3 years ago
Water moves through a constricted pipe in steady, ideal flow. At the
Irina-Kira [14]

A) Speed in the lower section: 0.638 m/s

B) Speed in the higher section: 2.55 m/s

C) Volume flow rate: 1.8\cdot 10^{-3} m^3/s

Explanation:

A)

To solve the problem, we can use Bernoulli's equation, which states that

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2

where

p_1=1.75\cdot 10^4 Pa is the pressure in the lower section of the tube

h_1 = 0 is the heigth of the lower section

\rho=1000 kg/m^3 is the density of water

g=9.8 m/s^2 is the acceleration of gravity

v_1 is the speed of the water in the lower pipe

p_2 is the pressure in the higher section

h_2 = 0.250 m is the height in the higher pipe

v_2 is hte speed in the higher section

We can re-write the equation as

v_1^2-v_2^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho} (1)

Also we can use the continuity equation, which state that the volume flow rate is constant:

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-section of the lower pipe, with

r_1 = 3.00 cm =0.03 m is the radius of the lower pipe (half the diameter)

A_2 = \pi r_2^2 is the cross-section of the higher pipe, with

r_2 = 1.50 cm = 0.015 m (radius of the higher pipe)

So we get

r_1^2 v_1 = r_2^2 v_2

And so

v_2 = \frac{r_1^2}{r_2^2}v_1 (2)

Substituting into (1), we find the speed in the lower section:

v_1^2-(\frac{r_1^2}{r_2^2})^2v_1^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho}\\v_1=\sqrt{\frac{2(p_2-p_1+\rho g h_2)}{\rho(1-\frac{r_1^4}{r_2^4})}}=0.638 m/s

B)

Now we can use equation (2) to find the speed in the lower section:

v_2 = \frac{r_1^2}{r_2^2}v_1

Substituting

v1 = 0.775 m/s

And the values of the radii, we find:

v_2=\frac{0.03^2}{0.015^2}(0.638)=2.55 m/s

C)

The volume flow rate of the water passing through the pipe is given by

V=Av

where

A is the cross-sectional area

v is the speed of the water

We can take any point along the pipe since the volume  flow rate is constant, so

r_1=0.03 cm

v_1=0.638 m/s

Therefore, the volume flow rate is

V=\pi r_1^2 v_1 = \pi (0.03)^2 (0.638)=1.8\cdot 10^{-3} m^3/s

Learn more about pressure in a liquid:

brainly.com/question/9805263

#LearnwithBrainly

0 0
3 years ago
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is th
Darya [45]

Answer:

1.92 x 10⁻¹²J

Explanation:

The magnetic force from the magnetic field gives the circulating protons gives the particle the necessary centripetal acceleration to keep it orbiting round the circular path. And from Newton's second law of motion, the force(F) is equal to the product of the mass(m) of the proton and the centripetal acceleration(a). i.e

F = ma

Where;

a = \frac{v^2}{r}             [v = linear velocity, r = radius of circular path]

=> F = m\frac{v^2}{r}           ------------(i)

We also know that the magnitude of this magnetic force experienced by the moving charge (proton) in a magnetic field is given by;

F = q v B sin θ       ----------(ii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = the angle between the velocity and the magnetic field.

Combining equations (i) and (ii) gives

m\frac{v^2}{r} = q v B sin θ           [θ = 90° since the proton is orbiting at the maximum orbital radius]

=> m\frac{v^2}{r} = q v B sin 90°

=> m\frac{v^2}{r} = q v B

Divide both side by v;

=> m\frac{v}{r} = qB

Make v subject of the formula

v = \frac{qBr}{m}

From the question;

B = 1.25T

m = mass of proton = 1.67 x 10⁻²⁷kg

r = 0.40m

q = charge of a proton = 1.6 x 10⁻¹⁹C

Substitute these values into equation(iii) as follows;

v = \frac{(1.6*10^{-19})(1.25)(0.4)}{(1.67*10^{-27})}

v = 4.79 x 10⁷m/s

Now, the kinetic energy, K, is given by;

K = \frac{1}{2}mv²

m = mass of proton

v = velocity of the proton as calculated above

K = \frac{1}{2}(1.67*10^{-27} * (4.79 * 10^7)^2 )

K = 1.92 x 10⁻¹²J

The kinetic energy is 1.92 x 10⁻¹²J

8 0
3 years ago
You have seen magnets sticking to the refrigerator door, or maybe in your science class room. They attract metal items, for exam
DENIUS [597]

Answer:

B) shrinks

Explanation:

The magnetic force is a force exerted between two magnets, or two magnetic materials, or also on an electric charge moving in a magnetic field.

If we talk about magnetic material, the magnetic field they generates can be represented using a dipole: essentially, they have a north pole (where the lines of the field go out) and a south pole (where the lines of the field go in).

Also, the lines spread apart as we move away from the magnet itself. This means that the strength of the field (and so, the intensity of the force) decreases as we move away from the magnet.

Using this description, we can now understand that when we move the paper clip further from the magnet, the force exerted on the clip decreases, as the magnetic field becomes weaker. So, the correct answer is B.

3 0
4 years ago
Other questions:
  • you're riding on a train that's moving at 5 km/h and you roll a ball down the aisle at 2 km/h in the same direction as the train
    14·1 answer
  • Chegg Given that the mean radius of the Moon’s orbit is 3.84 x 108 m and its period is 2.36 x 106 sec, at what altitude above th
    8·1 answer
  • A roller coaster, traveling with an initial speed of 15 meters per second, decelerates uniformly at –7.0 m/s2 to a full stop. Ap
    6·1 answer
  • An airplane is flying in a jet stream that is blowing at 45.0 m/s in a direction 23° south of east. Its direction of motion rela
    11·1 answer
  • Jake's toy car is sitting on a smooth, flat surface. This wheel and axle simple machine will remain in the same place because th
    8·1 answer
  • Which wave causes the medium to vibrate only in a direction parallel to the wave’s motion?
    15·2 answers
  • Plate] term 3 quiz 1 physics grade 9
    8·1 answer
  • Frequency more than 20,000 HZ​
    7·2 answers
  • Which is the answer for this question
    15·2 answers
  • If a car skids to a stop in 3.8s while undergoing a uniform acceleration of -9.55 m/s2, what is the car’s velocity?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!