B; to produce a hypothesis.
Answer:Climatic processes affect the dynamics of Earth's ice sheets and glaciers, and along ... by abrupt events and by continuous reshaping of Earth's surface from surface ... Forecasting natural disasters, including the timing and size of earthquakes, the . Last, human activity has a profound impact on water resources, landscape
Explanation:
step by step
Answer:
b) 68,9 km/h a) picture
Explanation:
In this problem, since velocity is expressed in km/h and time in minutes, we have to convert either time to hours or velocity to km/min. It is easier to use hours.
Using this formula we pass time to hours:

Now we can plot speed vs time (image 1). The problem says that the driver uses constant speed, so all lines have to be horizontal.
Using the values of the speed we calculate the distance in each interval

Using these values and the fact that she was having lunch in the third one (therefore stayed in the same position), we plot position vs time, using initial position zero (image 2, distance is in km, not meters).
Finally, we compute the average speed with the distance over time:

The answer is C but man if you have leak or a meltdown good luck to anyone downstream.
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>