D. distance = 23 m, displacement = + 1 m
Explanation:
Let's remind the difference between distance and displacement:
- distance is a scalar, and is the total length covered by an object, counting all the movements in any direction
- displacement is a vector connecting the starting point and the final point of a motion, so its magnitude is given by the length of this vector, and its direction is given by the direction of this vector.
In this case, the distance covered by Karen is given by the sum of all its movements:

The displacement instead is given by the difference between the final point (1.0 m in front of the starting line) and the starting point (the starting line, 0 m):

They send out waves differently and cannot be heard easily
Answer:
The archerfish must spit at a minimum speed of
at an angle of
above the horizontal.
Explanation:
Hi
First of all, we need to find the angle above the horizontal at which the archerfish must spit, as we can see in the attachment this angle is
.
Then we use the formula
, as we clear it for
, we obtain,
, therefore the archerfish must spit at a minimum speed of
at an angle of
above the horizontal.
Answer:
a = 8.951 m/s²
Explanation:
given,
angle = 0.52 radians
μ_s = 0.84
μ_k = 0.48
acceleration = ?
using
F + f = m a
mg sin θ + μk mg cos θ = m a
a = g sin θ + μk g cos θ
a = 9.8 x sin 0.52 + 0.48 x 9.8 x cos 0.52
a = 4.869 + 4.082
a = 8.951 m/s²
the magnitude of acceleration is a = 8.951 m/s²
Answer:
C) According to the second law of thermodynamics, not all energy from the burnt fuel is used to do work on the piston. It also produces heat which warms other parts of the car.
Explanation:
A) According to the fourth law of thermodynamics, the temperature of the other parts of the car increases due to the coolant used for the engine.
B) According to the first law of thermodynamics, the hood of the car heats up using heat from the surroundings in-order to achieve thermal equilibrium with the engine.
C) According to the second law of thermodynamics, not all energy from the burnt fuel is used to do work on the piston. It also produces heat which warms other parts of the car.
D) According to the third law of thermodynamics, the increase in the velocity of the car changes the entropy of the tires. To balance this change, the temperature of the other parts is increased.