<span>For given hyperbola:
center: (0,0)
a=7 (distance from center to vertices)
a^2=49
c=9 (distance from center to vertices)
c^2=81
c^2=a^2+b^2
b^2=c^2-a^2=81-49=32
Equation of given hyperbola:
..
2: vertices (0,+/-3) foci (0,+/-6)
hyperbola has a vertical transverse axis
Its standard form of equation: , (h,k)=(x,y) coordinates of center
For given hyperbola:
center: (0,0)
a=3 (distance from center to vertices)
a^2=9
c=6 (distance from center to vertices)
c^2=36 a^2+b^2
b^2=c^2-a^2=36-9=25
Equation of given hyperbola:
</span>
X = 3(y - 2/3) ...distribute thru the parenthesis
x = 3y - 6/3...reduce
x = 3y - 2
so ur answer is : x = 3(y - 2/3)
Answer:
y=x^3
Step-by-step explanation:
I don't know y sha