1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
3 years ago
13

The reciprocal of a number is added to three.The result is the quotient of 25 and the number. Find the number

Mathematics
1 answer:
Firdavs [7]3 years ago
5 0

Answer:

  8

Step-by-step explanation:

Let x represent the number. Then the reciprocal is 1/x. The quotient of 25 and the number is 25/x. The problem statement tells us ...

  3 + 1/x = 25/x

Subtracting 1/x, we have ...

  3 = 24/x

  x = 24/3 = 8 . . . . . . . . multiply by x/3

The number is 8.

You might be interested in
Solve for c.<br> 55c+13 &lt; 750 +39
iren [92.7K]

Answer:

c = anything less than 14.1

Step-by-step explanation:

55c+13 < 750 + 39

55c+13 < 789

55c < 776

c < 14.1

Hope It Helps

5 0
2 years ago
Read 2 more answers
Evaluate the double integral.
Fynjy0 [20]

Answer:

\iint_D 8y^2 \ dA = \dfrac{88}{3}

Step-by-step explanation:

The equation of the line through the point (x_o,y_o) & (x_1,y_1) can be represented by:

y-y_o = m(x - x_o)

Making m the subject;

m = \dfrac{y_1 - y_0}{x_1-x_0}

∴

we need to carry out the equation of the line through (0,1) and (1,2)

i.e

y - 1 = m(x - 0)

y - 1 = mx

where;

m= \dfrac{2-1}{1-0}

m = 1

Thus;

y - 1 = (1)x

y - 1 = x ---- (1)

The equation of the line through (1,2) & (4,1) is:

y -2 = m (x - 1)

where;

m = \dfrac{1-2}{4-1}

m = \dfrac{-1}{3}

∴

y-2 = -\dfrac{1}{3}(x-1)

-3(y-2) = x - 1

-3y + 6 = x - 1

x = -3y + 7

Thus: for equation of two lines

x = y - 1

x = -3y + 7

i.e.

y - 1 = -3y + 7

y + 3y = 1 + 7

4y = 8

y = 2

Now, y ranges from 1 → 2 & x ranges from y - 1 to -3y + 7

∴

\iint_D 8y^2 \ dA = \int^2_1 \int ^{-3y+7}_{y-1} \ 8y^2 \ dxdy

\iint_D 8y^2 \ dA =8 \int^2_1 \int ^{-3y+7}_{y-1} \ y^2 \ dxdy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( \int^{-3y+7}_{y-1} \ dx \bigg)   dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( [xy^2]^{-3y+7}_{y-1} \bigg ) \ dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( [y^2(-3y+7-y+1)]\bigg ) \ dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ([y^2(-4y+8)] \bigg ) \ dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( -4y^3+8y^2 \bigg ) \ dy

\iint_D 8y^2 \ dA =8 \bigg [\dfrac{ -4y^4}{4}+\dfrac{8y^3}{3} \bigg ]^2_1

\iint_D 8y^2 \ dA =8 \bigg [ -y^4+\dfrac{8y^3}{3} \bigg ]^2_1

\iint_D 8y^2 \ dA =8 \bigg [ -2^4+\dfrac{8(2)^3}{3} + 1^4- \dfrac{8\times (1)^3}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [ -16+\dfrac{64}{3} + 1- \dfrac{8}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{64-8}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{56}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [  \dfrac{-45+56}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [  \dfrac{11}{3}\bigg]

\iint_D 8y^2 \ dA = \dfrac{88}{3}

4 0
2 years ago
At the supermarket , 6 mangoes cost 6.12
Grace [21]

Answer:

good to know. but what's the question?

4 0
3 years ago
Read 2 more answers
Please explain how to do this well I really need help
astraxan [27]
Simply the radical expression
6 0
3 years ago
Another algebra question I need help with
zzz [600]
7x -7/2 y = -49
7/2 y = 7x + 49
y = 2x + 14
y - intercept = 14
x - intercept : 2x + 14 = 0 so x = -7

answer is C.
x - intercept : -7
y - intercept : 14
4 0
3 years ago
Other questions:
  • WILL GIVE BRAINLIEST! <br><br> What is the value of x to the nearest tenth?
    11·1 answer
  • Can someone talk me through the steps?
    13·1 answer
  • Which measurement is closest to the area of a circle with a circumference of 24 centimeters​
    8·1 answer
  • PLEASE HELP DUE TODAY
    10·2 answers
  • Javier recibe $8.10 USD por cada pagina que traduce del español a l ingles. El mes pasado recibió un pago total de $550.8 USD. ¿
    12·1 answer
  • It’s due late tonight can some pls help me pass
    8·1 answer
  • 1
    10·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B98%7D%20" id="TexFormula1" title=" \sqrt[4]{98} " alt=" \sqrt[4]{98} " ali
    6·1 answer
  • 5.93x0.85 slove the answer for me
    6·2 answers
  • The sum of angles in a triangle is 180 prove
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!