Answer:
x = 45/2 = 22.5 cm
Step-by-step explanation:
2x + 45 = 90
2x = 90- 45= 45
2x = 45
x = 45/2 = 22.5 cm
<em><u>plz </u></em><em><u>mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> plzzzz</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> this</u></em><em><u> will</u></em><em><u> be</u></em><em><u> helpful</u></em><em><u> to</u></em><em><u> you</u></em> .
<em><u>if </u></em><em><u>you</u></em><em><u> find</u></em><em><u> it</u></em><em><u> useful</u></em><em><u>.</u></em>
Answer:
C. No. The sum of the dimensions of the eigenspaces equals nothing and the matrix has 3 columns. The sum of the dimensions of the eigenspace and the number of columns must be equal.
Step-by-step explanation:
Here the sum of dimensions of eigenspace is not equal to the number of columns, so therefore A is not diagonalizable.
O goes over 22, N goes over -95, an I goes over 24, T goes over 16, V goes over -796, and those are the ones im sure of
20.35 divided by 3 equals 6 (:
General Idea:
If we have a quadratic function of the form f(x)=ax^{2} +bx+c , then the function will attain its maximum value only if a < 0 & its maximum value will be at x=-\frac{b}{2a} .
Applying the concept:
The height h is modeled by h = −16t^2 + vt + c, where v is the initial velocity, and c is the beginning height of the firecracker above the ground. The firecracker is placed on the roof of a building of height 15 feet and is fired at an initial velocity of 100 feet per second. Substituting 15 for c and 100 for v, we get the function as
.
Comparing the function f(x)=ax^{2} +bx+c with the given function
, we get
,
and
.
The maximum height of the soccer ball will occur at t=\frac{-b}{2a}=\frac{-100}{2(-16)} = \frac{-100}{-32}=3.125 seconds
The maximum height is found by substituting
in the function as below:

Conclusion:
<u>Yes !</u> The firecracker reaches a height of 100 feet before it bursts.