Answer:
1). All four triangles are right-angled.
3.) All four triangles are congruent.
4) Area of a rhombus = 4 x area of one triangle.
Step-by-step explanation:
If a rhombus is cut into four triangles using diagonals, the three statements that would apply to any rhombus would be that 'all those four triangles would be right-angled,' 'the triangles would be congruent to one another,' and 'area of one triangle * 4 would be equal to the area of the rhombus.'
As we know, the diagonals bisect one another in a rhombus at 90° and the angles opposite to one another are equal. This <u>proves that all four triangles constructed through the diagonals would be ≅ through SSS congruency and perpendicular to one another because the corresponding edges of the congruent triangles are also ≅</u> . Since the rhombus is divided into four equal parts, the area of one triangle into four would be equals to the area of the rhombus. Thus, <u>options 1, 3, and 4</u> are the correct answers.
Answer:
3.315
Step-by-step explanation:

<span>There are equations to calculate the volume of simple geometric objects such as cubes, spheres, cylinders, and cones. Approximate the spacecraft as an assemblage of such objects, calculate the volumes, then add them all up. Example: here.
Create a scale model inside a 3D modeling package, and use the included tools to calculate the internal volume. Example: On my mesh model of the Galactic Cruiser Leif Ericson, the AreaVol script informs me the ship has an internal volumeof 68,784.87 cubic meters.
See if somebody else has already calculated the volume. Example: According to ST-v-SW.Net the internal volume of the TOS Starship Enterprise is 211,248 cubic meters.
Use the known volume of a comparable existing object. Example: a Russian Oscar submarine has a volume of 15,400 cubic meters. It is a good size for a spaceship.
If the spacecraft is approximately a sphere or approximately a cylinder, just use the ship's average radius and height to calculate an approximate volume using the sphere or cylinder volume formulae. Close enough for government work.
Make it up out of your imagination.
Of course there is some differences of opinion on the exact value of the average density of a spacecraft.
One easy figure I've seen in various SF role playing games is a density of 0.1 to 0.2 metric tons per cubic meter (100 to 200 kilograms). That corresponds to average pressure compartments being cubes 10 meters on a side, with pressure bulkheads averaging 17 to 33 kg/m2.
Ken Burnside did some research when he designed his game Attack Vector: Tactical. He found that jet airliners have an average density of about 0.28 metric tons per cubic meter, fighter aircraft 0.35 tons/m3, wet navy warships from 0.5 to 0.6 tons/m3, WWII battleships 0.7 tons/m3 (it don't take much excess mass to send them straight to Davy Jones locker), and submarines 0.9 tons/m3. For the combat spacecraft in AV:T, Ken chose a density of 0.25 tons/m3</span>
Answer:
About 39 hours
Step-by-step explanation:
You would do 200/5.15 and get 38.83....
If you round then you get 39.
The rays in the picture are:
<h3>What is a ray?</h3>
A ray is a line segment with arrow head. The arrow head helps in pointing to the direction of the ray. The arrow head may appear at the both ends of a ray signify that the ray continues in both direction.
Often times in the field of science, rays are used to signify direction, while the length of the line segment signify magnitude.
Bearing in mind that ray can be in one direction or two directions, we now look at the picture to point out the rays to be:
Read more on rays here: brainly.com/question/23536244
#SPJ1