Answer:
3. x = 17
4. a. m<NMP = 48°
b. m<NMP = 60°
Step-by-step explanation:
3. Given that <BAM = right angle, and
m<BAM = 4x + 22, set 90° equal to 4x + 22 to find x.
4x + 22 = 90
Subtract 22 from both sides
4x + 22 - 22 = 90 - 22
4x = 68
Divide both sides by 4
4x/4 = 68/4
x = 17
4. a. m<NMQ = right angle (given)
m<PMQ = 42° (given)
m<PMQ + m<NMP = m<NMQ (angle addition postulate)
42 + m<NMP = 90 (substitution)
m<NMP = 90 - 42 (subtracting 42 from each side)
m<NMP = 48°
b. m<NMQ = right angle (given)
m<NMP = 2*m<PMQ
Let m<PMQ = x
m<NMP = 2*x = 2x
2x + x = 90° (Angle addition postulate)
3x = 90
x = 30 (dividing both sides by 3)
m<PMQ = x = 30°
m<NMP = 2*m<PMQ = 2*30
m<NMP = 60°
I think it’s either b or c. But I’m leaning more towards c
Answer:
r = -5. Find the pattern and write the recursive formula: a_n + 1 = - 5 a_nGiven the recursive formula: r =
The second one seems about right.
(3n)-2=5
Move all numbers without a variable to the right side of the equation
3n=7
Divide 7 by 3
n=2.333