D, because skin tans to help us stand being in the sun without getting burned.
An example of physiological adaption is being able to digest milk. Before, humans were not able to digest milk before we developed enzymes that now make us have the ability to do so, thus allowing us another food source.
25% chance because when you do a Punnett square for your genes you find that only 1 of 4 are tt and 2 are TT and one is Tt so the percentage for the plant to be short would be 25%
Answer:
Plants exchange oxygen and carbon dioxide. The oxygen is used for respiration and is also a waste product of photsynthesis. The carbon dioxide is used for photsynthesis.
During the day time, the stomata of the plant will open to let the carbon dioxide in for photsynthesis. Cabron dioxide diffuses into the leaf down a concetration gradient. oxygen will leave the leaf down the concentration gradient.
This process is the gas exchnage of plants.
How stomata open: Stomata open during the dayby absorbing water vapor, become turgid and and open. During the night, the stomata becomes flaccid and floppy. this causes it to close.
Explanation:
Answer:
My pretest behaviors were triggered by the sympathetic nervous system, while my body returned to its normal state by the way of the parasympathetic nervous system, after the test.
Explanation:
The sympathetic nervous system and the parasympathetic nervous system are part of the autonomic nervous system. The main function of the autonomic nervous system is to regulate the heart, kidneys, and liver which are not under voluntary control. The regulation of the body’s unconscious actions is executed through the sympathetic and the parasympathetic nervous system.
Upon exposure to stressors or threats, the sympathetic nervous system is triggered. Epinephrine and norepinephrine are then released, causing acceleration of the heart, constriction of blood vessels, increase in blood pressure, profuse sweating and other related responses against stress. The sympathetic nervous system controls all these involuntary responses that could be termed “fight-flight-or-freeze” response.
On the other hand, the parasympathetic nervous system initiates what is termed “rest and digest” response, which occurs immediately after the “fight-flight-or-freeze” phase response to stress is over. The body is returned to its normal state by the parasympathetic nervous system. The parasympathetic nervous system releases acetylcholine, which regulates the function of the body during a period of rest or recuperation.