Show that if p(a) ⊂ p(b) then a ⊂ b.
<span>I will assume p() means power set. </span>
<span>proof: let x∈a, then {x} ∈ p(a) and so by hypothesis {x} ∈ p(b). However {x} could not be in p(b) unless x∈b. This shows that each element of a is an element of b and hence a ⊂ b.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
im guessing the answer is 43.7
Step-by-step explanation:
Answer:
9.14285714286
Step-by-step explanation:
i dont know if you need to round it but heres the answer (hasnt been rounded)
There appears to be a positive correlation between the number of hour spent studydng and the score on the test.
When identifying the independent and dependent quantities, we think about what would cause the other to change. The score on the test would not cause the number of hours spent studying to change; rather, the number of hours spent studying would cause the score to change. This means that the number of hours studying would be the independent quantity and the score would be the dependent quantity.
Plotting the graph with the time studying on the x-axis (independent) and the score on the y-axis (dependent) gives you the graph shown. You can see in the image that there seems to be a positive correlation; the data seem to generally be heading upward.
When you use this formula slope = rise/run like rise over run than you find the slope. rise me y and run means x. So when the line slopes downwards to the right it became negative slope as x increases and when line sloped upward to the right the slope become positive as y decreases.
formula to find slope: slope = rise/run or y/x