The second matrix
represents the triangle dilated by a scale factor of 3.
Step-by-step explanation:
Step 1:
To calculate the scale factor for any dilation, we divide the coordinates after dilation by the same coordinated before dilation.
The coordinates of a vertice are represented in the column of the matrix. Since there are three vertices, there are 2 rows with 3 columns. The order of the matrices is 2 × 3.
Step 2:
If we form a matrix with the vertices (-2,0), (1,5), and (4,-8), we get
![\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%264%5C%5C0%265%26-8%5Cend%7Barray%7D%5Cright%5D)
The scale factor is 3, so if we multiply the above matrix with 3 throughout, we will get the matrix that represents the vertices of the triangle after dilation.
Step 3:
The matrix that represents the triangle after dilation is given by
![3\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right] = \left[\begin{array}{ccc}3(-2)&3(1)&3(4)\\3(0)&3(5)&3(-8)\end{array}\right] = \left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%264%5C%5C0%265%26-8%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%28-2%29%263%281%29%263%284%29%5C%5C3%280%29%263%285%29%263%28-8%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-6%263%2612%5C%5C0%2615%26-24%5Cend%7Barray%7D%5Cright%5D)
This is the second option.
Answer:
A 67 is the correct answer sure
Order the numbers from least to greatest. a –8, −10, 0, 5, 1, −1, 3, −6, −9, −19, 32
krek1111 [17]
Start with -19, -10, -9,-8,-6,-1,0,1,3,5,32
Answer:
40
Step-by-step explanation:
0.13 ⟌5.2 (We can move 0.13 over two spots)
13⟌520 (We move the decimal two spots because of previous)
We have
₄ ₀
13⟌520
- 52
______
0 0
- 0
______
0
So 40 is our final answer.
Answer:
3015
Step-by-step explanation:
45×67
is equal to Three thousand & fifteen