El costo por el consumo de 512 MB, con base en los cargos mencionados, es de $25408.
<em>Cálculo del costo paso a paso.</em>
Según los datos en el ejercicio, se puede identificar que el costo mensual debe contener el cargo fijo mensual ($8000), más los megabytes consumidos por $34, teniendo eso en cuenta, se puede generar la siguiente fórmula:
- <em>Costo por consumo = Cargo fijo mensual + MB * $34</em>
Donde:
- MB = Megabytes consumidas.
Si reemplazamos el valor de MB por la cantidad mencionada en el ejercicio (512 Mb), y el cargo fijo mensual ($8000) obtenemos:
- Costo por consumo = $8000 + 512 * $34
- Costo por consumo = $8000 + $17408
- Costo por consumo = $25408
Por lo tanto, <em><u>el </u></em><em><u>costo</u></em><em><u> por consumo de 512 Mb es de $25408</u></em>.
Si deseas ver ejercicios similares, revisa el enlace a continuación: brainly.com/question/12918169?referrer=searchResults
Answer:
C
Step-by-step explanation:
Since y will have same value, y doesn't really matter. Thus,
We can solve for y in the 2nd equation as:
-3x - y = 4
-3x - 4 = y
Now we can plug it into the first and solve for x:
-9x + 4y = 8
-9x + 4(-3x - 4) = 8
-9x - 12x - 16 = 8
-21x = 8 + 16
-21x = 24
x = 24/-21
x = -8/7
Correct answer is C.
I can’t see nun, sorry kid.
Step-by-step explanation:
Since
varies directly as
we can write the relation as

where k is the constant of proportionality.
a) To solve for the k, we substitute the given values:


b) The equation relation x and y can be written as

c) When y = 9,

Answer:
The integers are 4 and 7 or -2 and 1.
Step-by-step explanation:
You can make a system of equations with the description of the two integers.
1. x = y + 3
2. 2x + 2 = y^2
The simplest and the fastest way to solve this system in this case is substitution. You can substitute x for y + 3 in the second equation.
1. x = y + 3
2. 2(y + 3) + 2 = y^2
Now simplify and solve the second one. For convenience, I will just disregard the first equation for now.
2y + 6 + 2 = y^2
y^2 - 2y - 8 = 0
You can factor this equation to solve for y.
(y - 4) (y + 2) = 0
y = 4, y = -2
Now we can substitute the value of y for x in the first equation.
x = 7, x = 1