Answer:
If 9x is not =27, then x is not =3
Step-by-step explanation:
Going out on a limb here, please ignore if I'm missing it:
If 9x is not =27, then x is not =3
(I can't type the equal sign with a slash through it.)
Answer:

Step-by-step explanation:
<em><u>Given:</u></em>

<em><u>Solve for:</u></em>

<em><u>Solution:</u></em>
(1) Let's move all of components that do not contain
(our target) to the right side (notice the change of sign of
from negative to positive):

(2) Let's divide both sides of equation by 4:

(3) Now, we simplify the left side:

This is the solution.
Hope this helps!
:)
Answer:
I. m = 2401
II. ((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
Step-by-step explanation:
I. Determination of m
x ∆ y = x² − 2xy + y²
2 ∆ − 5 = √m
2² − 2(2 × –5) + (–5)² = √m
4 – 2(–10) + 25 = √m
4 + 20 + 25 = √m
49 = √m
Take the square of both side
49² = m
2401 = m
m = 2401
II. Simplify ((n+1) ∆ y)/n
We'll begin by obtaining (n+1) ∆ y. This can be obtained as follow:
x ∆ y = x² − 2xy + y²
(n+1) ∆ y = (n+1)² – 2(n+1)y + y²
(n+1) ∆ y = n² + 2n + 1 – 2ny – 2y + y²
(n+1) ∆ y = n² + 2n – 2ny – 2y + y² + 1
(n+1) ∆ y = n² – 2ny + y² + 2n – 2y + 1
(n+1) ∆ y = n² – ny – ny + y² + 2n – 2y + 1
(n+1) ∆ y = n(n – y) – y(n – y) + 2(n – y) + 1
(n+1) ∆ y = (n – y + 2)(n – y) + 1
((n+1) ∆ y)/n = [(n – y + 2)(n – y) + 1] / n
((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
? idont understsnd be more specific
Answer:
Please check the explanation.
Step-by-step explanation:
Let the coordinates of the point F be (x, y).
When a point F(x, y) is reflected over the x-axis, the x-coordinate of the point F remains the same, and the y-coordinate of the point reverses the sign.
Thus, the rule of reflection over the x-axis:
F(x, y) → F'(x, -y)
Here,
F'(x, -y) would be coordinates of point F after the reflection over the x-axis.
Let say, the point F(1, 2).
The coordinate of the point F after the reflection over the x-axis would be:
F(1, 2) → F'(1, -2)
Thus, F'(1, -2) would be the coordinates of point F after the reflection over the x-axis.