Answer:
Only C is a function
Step-by-step explanation:
To test whether a graph is a function you use the vertical line test.
If you can place a vertical line anywhere on the plane (in the domain of the "function" to be tested) and it intersects the curve at more than one point, the curve is not a function.
We see with A, wherever we put the vertical line it intersects twice.
With B, it intersects infinitely many times.
C is a function because wherever we put the vertical line, it only intersects once.
D is a function because it intersects twice providing we do not put it on the "tip" of the parabola.
The mathematical reasoning behind this is that a function must be well-defined, that is it must send every x-value to one specific y-value. There can be no confusion about where the function's input is going. If you look at graph B and I ask you what is f(3)? Is it 1? 2? 3? ... Who knows, it's not well-defined and so it's not a function. However if I ask you about C, whichever input value for x I give you, you can tell me to which y-value it gets mapped/sent to.
A rule of polygons is that the sum<span> of the </span>exterior angles<span> always equals 360 degrees, but lets prove this for a regular </span>octagon<span> (8-sides). First we must figure out what </span>each<span>of the interior </span>angles<span> equal. To do this we use the </span>formula<span>: ((n-2)*180)/n where n is the number of sides of the polygon</span>
Answer:$6
Step-by-step explanation:Divide 36 by 6
d is the answer
Step-by-step explanation:
all work is shown and pictured
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is

