Answer:

Explanation:
Paschen series of hydrogen, is the series of transitions resulting from the hydrogen atom when electron jumps from a state of
to
.
Emission lines for hydrogen are given by:

is the wavelength of the line emitted,
is the Rydberg constant for hydrogen,
is the final energy state of the electron and
is the energy state where the electron transition originated.
We have
and
. Solving for n:

Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
Answer:
400 Hz
Explanation:
The frequency of a sound wave is found by the velocity/wavelength. Therefore, f = v/wavelength = (200 m/s)/(0.5 m) = 400 Hz
I hope this helps! :)
To develop this problem it is necessary to apply the concepts related to the Cross Product of two vectors as well as to obtain the angle through the magnitude of the angles.
The vector product between the Force and the radius allows us to obtain the torque, in this way,





Therefore the torque on the particle about the origen is 50k
PART B) To find the angle between two vectors we apply the definition of the dot product based on the vector quantities, that is,





Therefore the angle between the ratio and the force is 103.88°