Answer: B. It demonstrates a behavior or particles.
Explanation: I took the test and got it right
Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
Answer:
It should be A
Explanation:
the amount of energy a population has should be based on how many people there are. if more people come into the population, the more energy it should have. if people leave the population, the less energy it should have.
Answer:


Explanation:
Given that:
The radius of the table r = 16 cm = 0.16 m
The angular velocity = 45 rpm
= 
= 4.71 rad/s
However, the relative velocity of the bug with turntable is:
v = 3.5 cm/s = 0.035 m/s
Thus, the time taken to reach the bug to the end is:


t = 4.571s
So the angle made by the radius r with the horizontal during the time the bug gets to the end is:



Now, the velocity components of the bug with respect to the table is:





Also, for the vertical component of the velocity 




Answer:
The slope of the graph is what you need. That tells you the speed not the velocity. In order to find the velocity you would also need to know the direction of the motion.