Answer:
They both have the #5 and they both have 3 #'s that are prime?
Step-by-step explanation:
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete, as the image of the polygon is not given.
I will answer this question with the attached image (similar to your question)
The attached polygon is a trapezoid of the following dimensions.

<u>Parallel sides</u>


So, the area is:




Answer:
13.31
Step-by-step explanation:
First do 35.19-12.78=22.41
I assume slightly more than $9 is .1
then subtract 22.41-9.1=13.31
PART A
The equation of the parabola in vertex form is given by the formula,

where

is the vertex of the parabola.
We substitute these values to obtain,

The point, (3,6) lies on the parabola.
It must therefore satisfy its equation.




Hence the equation of the parabola in vertex form is

PART B
To obtain the equation of the parabola in standard form, we expand the vertex form of the equation.

This implies that

We expand to obtain,

This will give us,


This equation is now in the form,

where

This is the standard form
3(x-1)-8=4(1+x)+5
One solution was found :
x = -20
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
3*(x-1)-8-(4*(1+x)+5)=0
Step by step solution :
Step 1 :
Equation at the end of step 1 :
((3•(x-1))-8)-(4•(x+1)+5) = 0
Step 2 :
Equation at the end of step 2 :
(3 • (x - 1) - 8) - (4x + 9) = 0
Step 3 :
Step 4 :
Pulling out like terms :
4.1 Pull out like factors :
-x - 20 = -1 • (x + 20)
Equation at the end of step 4 :
-x - 20 = 0
Step 5 :
Solving a Single Variable Equation :
5.1 Solve : -x-20 = 0
Add 20 to both sides of the equation :
-x = 20
Multiply both sides of the equation by (-1) : x = -20
One solution was found :
x = -20
hope this is wht u wanted