Answer:
DNA is made up of a sugar phosphate backbone .
it has4 bases namely adenine ,thymine ,guanine and cytosine shortened to A T G C
adenine and thymine are connected by 2 hydrogen bonds and guanine and cytosine are connected by 3 hydrogen bonds
the two strands are anti parallel in nature ie, if one strand is from 3 to 5 the strand is from 5 to 3.. there are three types of DNA depending on the environment... they are adna bdna and zdna
Explanation:
hope it helps....
good luck
Answer:
Methane is a chemical compound with the chemical formula CH4, symbolizing one atom of carbon and four atoms of hydrogen. It is a group 14 hydride and the simplest alkaline, and is the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure. Methane naturally occurs both below ground and under the seafloor, and is formed by both geological and biological processes. In nature, methane is produced by the anaerobic bacterial decomposition of vegetable matter under water. Methane is important because it can be captured from landfills, can be burned to produce electricity, heat buildings, or power garbage trucks. Methane can also be captured from farm digesters, which are big tanks that contain manure and other waste from barns that house livestock such as cows and pigs. In fact, Jordan Dairy Farms in Massachusetts uses a biodigester to turn cow manure into methane gas, which is used for fuel or turned into electricity.
the three functions of mitosis are Asexual Reproduction, growth, and tissue repair.
Answer:
1) The genetic changes can lead to a reduction in the capacity of the mice to move glycogen at its branches points and lowers blood glucose levels between meals.
2) Genetic changed can lead to a decrease in the capacity to lower blood glucose due to the knock out of the hexokinase gene leading to elevated levels in the bloodstream.
(c) A knockout of FBPase2 will result in elevated levels of fructose-2,6-bisphosphate in
liver favoring the glycolytic pathway and inhibiting gluconeogenesis by the decrease of fructose 1,6-
bisphosphatase-1 activity
(d) An active FBPase-2 will now favor gluconeogenesis and this inhibits glycolysis. I.e. a decrease in PFK-1 activity while increasing FBPase-1 activity simultaneously.