Answer:
a) 3⁵5³.
b) 1
c) 23³
d) 41·43·53
e) 1
f) 1111
Step-by-step explanation:
The greatest common divisor of two integers is the product of their common powers of primes with greatest exponent.
For example, to find gcd of 2⁵3⁴5⁸ and 3⁶5²7⁹ we first identify the common powers of primes, these are powers of 3 and powers of 5. The greatest power of 3 that divides both integers is 3⁴ and the greatest power if 5 that divides both integers is 5², then the gcd is 3⁴5².
a) The greatest common prime powers of 3⁷5³7³ and 2²3⁵5⁹ are 3⁵ and 5³ so their gcd is 3⁵5³.
b) 11·13·17 and 2⁹3⁷5⁵7³ have no common prime powers so their gcd is 1
c) The only greatest common power of 23³ and 23⁷ is 23³, so 23³ is the gcd.
d) The numbers 41·43·53 and 41·43·53 are equal. They both divide themselves (and the greatest divisor of a positive integer is itself) then the gcd is 41·43·53
e) 3³5⁷ and 2²7² have no common prime divisors, so their gcd is 1.
f) 0 is divisible by any integer, in particular, 1111 divides 0 (1111·0=0). Then 1111 is the gcd
Answer:
(-4, 2)
Step-by-step explanation:
By looking at the graph, the solution to the system of linear equations will always be where they intercept. If they both are the same line it means that there are infinite solutions, and if they don't intercept at all, that means there are no solutions.
Answer:
9 gal
Step-by-step explanation:
150/18
8.333333333333334
if we round that to the greater whole gallon we get 9 gallons
F(x) = √(5x + 7)
g(x) = √(5x - 7)
(f + g)(x) = f(x) + g(x)
(f + g)(x) = √(5x + 7) + √(5x - 7)
Answer: C)
To find the slope of a line that goes through given points with known coordinates, you divide the subtraction of the y of the second point minus the y of the first point, by the subtraction of the x of the second point minus the x of the first point:
m = (yB-yA) / (xB-xA)
Let A(8,5) and B(6,7).
With yB = 7; yA = 5; xB = 6; xA = 8
m = (7-5) / (6-8)
m = 2/-2
m = -1
So the slope of the line that goes through the given points (8,5) and (6,7) is m = -1.
I've added a pic of the line with both points under the answer.
Hope this Helps! :)