The process of flask becoming cold is due to endothermic reaction.
Answer: Option B
<u>Explanation:</u>
So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.
If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.
While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.
Answer:
Chicken and peanut butter lol
Explanation:
Directly proportional to the product of the two charges and inversely proportional to the square of the distance between them
Answer:
Explanation:
The amplitude of the oscillation under SHM will be .5 m and the equation of
SHM can be written as follows
x = .5 sin(ωt + π/2) , here the initial phase is π/2 because when t = 0 , x = A ( amplitude) , ω is angular frequency.
x = .5 cosωt
given , when t = .2 s , x = .35 m
.35 = .5 cos ωt
ωt = .79
ω = .79 / .20
= 3.95 rad /s
period of oscillation
T = 2π / ω
= 2 x 3.14 / 3.95
= 1.6 s
b )
ω = 
ω² = k / m
k = ω² x m
= 3.95² x .6
= 9.36 N/s
c )
v = ω
At t = .2 , x = .35
v = 3.95 
= 3.95 x .357
= 1.41 m/ s
d )
Acceleration at x
a = ω² x
= 3.95 x .35
= 1.3825 m s⁻²
Answer:
C) 413 Hz
Explanation:
For destructive interference, the path difference ΔL = (n + 1/2)λ where ΔL = L₂ - L₁ where L₁ = person's distance from one speaker (the closer one) = 5.0m and L₂ = person's distance from other speaker (the farther one) = 6.2 m and λ = wavelength = v/f where v = speed of sound = 330 m/s and f = frequency
So, ΔL = (n + 1/2)λ
L₂ - L₁ = (n + 1/2)v/f
f = (n + 1/2)v/(L₂ - L₁)
At the second lowest frequency that results in destructive interference at the point where the person is standing, n = 1.
So,
f = (1 + 1/2)v/(L₂ - L₁)
f = 3v/2(L₂ - L₁)
Substituting the values of the variables into the equation, we have
f = 3v/2(L₂ - L₁)
f = 3(330 m/s)/2(6.2 m - 5.0 m)
f = 3(330 m/s)/2(1.2 m)
f = 990 m/s ÷ 2.4 m)
f = 412.5 Hz
f ≅ 413 Hz