According to Newton, an object will only accelerate if there is a net or unbalanced forceacting upon it. The presence of an unbalanced force will accelerate an object - changing its speed, its direction, or both its speed and direction.
The distance is 30 km and the displacement is 22.4 km North East
In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:
