The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
When bacteria in the soil takes nitrogen from the air it becomes nitrates it can finally move through the food chain in this form.
These are the Kepler's laws of planetary motion.
This law relates a planet's orbital period and its average distance to the Sun. - Third law of Kepler.
The orbits of planets are ellipses with the Sun at one focus. - First law of Kepler.
The speed of a planet varies, such that a planet sweeps out an equal area in equal time frames. - Second law of Kepler.
Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.