There's a very subtle thing going on here, one that could blow your mind.
Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.
The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect. (The answer to the question is choice-c.)
But that may not be the only way that light waves can get stretched. It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us.
From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.
Now: If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !
Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:
It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us. That's all true. Astronomers are doing it
every day. I mean every night.
So here's the question for you to think about ... maybe even READ about:
When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?
The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
The frictional force of an object is the product of the normal force and coefficient of kinetic friction. Here the frictional force acting on the object is 16.4 N.
<h3>What is frictional force?</h3>
Frictional force is a kind of force acting on a body to resist it from motion. Thus, the direction of the force will be in negative with the magnitude. Frictional force is the product of coefficient of friction and the normal force.
The normal force acting on the object of mass 4.2 Kg is N = mg
N = 4.2 Kg × 9.8 m/s² = 41.16 N
Frictional force = ц N
= 0.40 × 41.16 N
= 16.4 N.
Therefore, the frictional force acting between the surface of the object and the floor is 16.4 N
To find more on frictional force, refer here:
brainly.com/question/1714663
#SPJ1
Your question is incomplete. But your complete question probably was:
The coefficient of kinetic friction between an object and the surface upon which it is sliding is 0.40 the weight of the object is 4.2 kg. What is the frictional force of the object?
Answer:
Some students appreciated the social aspect of Zoom classrooms, while others felt online education worked best for them when they were working on their own. ... Students said they appreciated having a well-planned work week and didn't appreciate “surprise” assignments online any more than they appreciate them in class
Explanation:
What's I know I said
What do you u write it
Answer:
Chief Hopper
Explanation:
Mike travels at a constant speed of 3.1 m/s. To find how long it takes him to reach the school, we need to find the distance he travels. We can do this using Pythagorean theorem.
a² + b² = c²
(1000 m)² + (900 m)² = c²
c ≈ 1345 m
So the time is:
v = d / t
3.1 m/s = 1345 m / t
t ≈ 434 s
Next, Chief Hopper travels a total distance of 1900 m, starting at rest and accelerating at 0.028 m/s². So we can use constant acceleration equation to find the time.
d = v₀ t + ½ at²
1900 m = (0 m/s) t + ½ (0.028 m/s²) t²
t ≈ 368 s
So Chief Hopper reaches the school first, approximately 66 seconds before Mike does.