-|2x+3| > 2 and <span>-|2x+3| > - 2
</span>-2x+3 > 2
-2x > 2 - 3
-2x > -1
-2x / -2 > -1 / -2
x < 1/ 2
-|2x+3| > - 2
x < 5/2
<h3>given:</h3>

<h3>to find:</h3>
the radius of the given ball (sphere).
<h3>solution:</h3>
![r = \sqrt[3]{ \frac{3v}{4\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3v%7D%7B4%5Cpi%7D%20%7D%20)
![r = \sqrt[3]{ \frac{3 \times 905}{4\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%20%5Ctimes%20905%7D%7B4%5Cpi%7D%20%7D%20)

<u>therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>radius</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>ball</u><u> </u><u>is</u><u> </u><u>6</u><u> </u><u>cm</u><u>.</u>
note: refer to the picture I added on how you can change r as the subject of the formula.
-1 = (x-1)/3
(multiply both sides by 3)
-3 = x-1
(add 1 on both sides)
x=-2
The answer is <span>a.)(x - 4)2 = 3.
(x - a)</span>² = b can be expressed as:
x² - 2ax + a² = b ⇒ x² - 2ax + a² - b = 0
Our equation is x² - 8x + 13 = 0.
The general formula is x² - 2ax + (a² - b) = 0
Thus:
8x = 2ax and a² - b = 13
Divide both sides of the first equation (8x = 2ax) by x:
8 = 2a ⇒ a = 8 ÷ 2 = 4
Replace a in the second equation (a² - b = 13):
4² - b = 13 ⇒ b = 4² - 13 = 16 - 13 = 3
Now when we have a and b, let's just replace them in the general equation:
(x - a)² = b
(x - 4)² = 3