1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harina [27]
3 years ago
7

I need a. Correct answer I will mark brainliest

Mathematics
1 answer:
Otrada [13]3 years ago
4 0

Answer:

Option (A)

Step-by-step explanation:

By satisfying the equation of a function 'f' by each coordinates given in the options we can get the point which lies on the graph of f(x) = 2\times (5)^x

Option (A). (1, 10)

f(1) = 2\times (5)^1

10 = 10

True.

Therefore, point (1, 10) lies on the graph.

Option (B). (0, 10)

f(0) = 2\times 5^0

10 = 2

Not true.

Therefore, point (0, 10) doesn't lie on the graph.

Option (C). (10, 1)

f(10) = 2\times 5^{10}

1 = 19531250

Not true.

Therefore, point (10, 1) doesn't lie on the graph.

Option (D). (0, 0)

f(0) = 2\times 5^0

0 = 2

Not True.

Point (0, 0) doesn't lie on the graph.

Option (A) will be the answer.

You might be interested in
Help asap pls
Svet_ta [14]

Answer:

Eating dinner and eating dessert are dependent events because

P(dinner) . P(dessert) = 0.9 × 0.6 = 0.54 which is not equal to

P(dinner and desert) = 0.5 ⇒ answer A

Step-by-step explanation:

* Lets study the meaning independent and dependent probability  

- Two events are independent if the result of the second event is not

  affected by the result of the first event

- If A and B are independent events, the probability of both events  

 is the product of the probabilities of the both events

- P (A and B) = P(A) · P(B)

* Lets solve the question  

∵ There is a 90% chance that a person eats dinner

∴ P(eating dinner) = 90/100 = 0.9

∵ There is a 60% chance a person eats dessert

∴ P(eating dessert) = 60/100 = 0.6

- If eating dinner and dating dessert are independent events, then

 probability of both events is the product of the probabilities of the

 both events

∵ P(eating dinner and dessert) = P(eating dinner) . P(eating dessert)

∴ P(eating dinner and dessert) = 0.9 × 0.6 = 0.54

∵ There is a 50% chance the person will eat dinner and dessert

∴ P(eating dinner and dessert) = 50/100 = 0.5

∵ P(eating dinner and dessert) ≠ P(eating dinner) . P(eating dessert)

∴ Eating dinner and eating dessert are dependent events because

  P(dinner) . P(dessert) = 0.9 × 0.6 = 0.54 which is not equal to

  P(dinner and desert) = 0.5

8 0
2 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
The volume of a rectangular prism is given by the formula V = lwh, where / is the length of the prism, w is the width, and his
Vedmedyk [2.9K]
The answer would be option D.
10a^3 + 91a^2 + 54a - 792
6 0
3 years ago
Which of the following statements are true of the graph of the function f(x)=(x+5)(x-3)?
mr_godi [17]

Answers: b, d and e

b.The graph has a relative minimum

d. The graph has an x intercept at 3,0

e. the graph has an y intercept at 0,-15

f(x)=(x+5)(x-3)

The given equation is in the form of f(x) = a(x-b)(x-c)

If 'a' is positive then graph has a relative minimum

If 'a' is negative then graph has a relative maximum

Here a=1 that is positive so graph has a relative minimum .

To find x intercept we set f(x) =0 and solve for x

0=(x+5)(x-3)

x+5 =0 -> x = -5 so x intercept is (-5,0)

x - 3=0 -> x= 3 so x intercept is (3,0)

To find y intercept we plug in 0 for x

y=(x+5)(x-3)

y=(0+5)(0-3) = -15

so y intercept is (0,-15)



5 0
3 years ago
Read 2 more answers
If 10 cups of ice cream are separated into 1/5 cup sample serving how many samples can be served​
cestrela7 [59]

Answer:

50 Samples

Step-by-step explanation:

Divide the total cups of ice cream (10) by the sample amount (1/5)

\frac{10}{\frac{1}{5} }

10 ÷ 1/5

Use the keep change flip rule.

\frac{10}{1}*\frac{5}{1}  = 50

8 0
3 years ago
Read 2 more answers
Other questions:
  • Geometry question plz help
    7·1 answer
  • Round $299.51 to the nearest dollar.
    5·1 answer
  • A builder makes drainpipes that drop 1cm over a horizontal distance of 30cm to prevent clogs. A certain drainpipe needs to cover
    5·1 answer
  • Evaluate the Expression using the given values:<br> 3x + y; use x =<br> 1 and y.= 3
    12·2 answers
  • If csc θ = 13/12, find sin θ.
    14·1 answer
  • Is (4,2) a solution of the system?
    14·2 answers
  • An AutoCAD drawing has a scale of 1/2 inches to 3 ft. If a piece of a bridge measures 17 ft, how long is that piece in the AutoC
    6·1 answer
  • Question 7Partially correct answer. Your answer is partially correct. Try again.An article in Knee Surgery, Sports Traumatology,
    11·1 answer
  • 1
    11·1 answer
  • 4. Emily’s house has a chimney. What is the volume of her chimney? 4 in 9 in 12 in 3 in 4 in 6 in
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!