Answer:
detail is given below.
Explanation:
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
The given equation is balanced chemical equation of photosynthesis. There are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
If equation is not balanced,
CO₂ + H₂O → C₆H₁₂O₆ + O₂
It can not follow the law of conservation of mass because mass is not equal on both side of equation.
Answer:
They have the same number of valence electrons (5) so the body assumes they are the same element.
Answer:
When you have the feeling of danger and you either don't want to face it or you want to face it.
Explanation:
Since the oxygen likes to hog all the electrons, it gives the hydrogen molecules a slight positive charge and the itself a slightly negative charge.
Positive attracts negative, so there is some sort of attraction between water molecules, though a weak one.
Answer:
c) CH₃Cl
Explanation:
Due the relative abundance of chlorine and bromine. It is possible to determine which of the halogens is present in a mass spectrum of a organic compound:
The Cl-35, Cl-37 have a relative abundance of 75/25; Br-79 and Br-81 of 50/50.
For that reason, if a compound has a M/M+2 ratio of 75:25 you can be sure the compound has 1 Cl in its structure. Thus, the only possible structure is:
<h3>
c) CH₃Cl</h3>