Answer:
First term: 5
Fourth term: 5 1/2
Tenth term: 6 1/2
Step-by-step explanation:
Let's find the first, fourth and tenth terms of the arithmetic sequence described by the given rule:
A(n) = 5 + (n-1) (1/6)
First term:
A(1) = 5 + (1-1) (1/6)
A(1) = 5 + (0) (1/6)
A(1) = 5
Fourth term:
A(4) = 5 + (4-1) (1/6)
A(4) = 5 + (3) (1/6)
A(4) = 5 + 3/6 = 5 3/6 = 5 1/2 (simplifying)
Tenth term:
A(10) = 5 + (10-1) (1/6)
A(10) = 5 + (9) (1/6)
A (10) = 5 + 9/6 = 6 3/6 = 6 1/2 (simplifying)
To find this, first find the factor or rate of which the numbers are moving. To do so do as follows.
subtract 1 from 3
3-1=2
So each number is having 2 added to it.
Now add two to 7 and the numbers afterwards till you get the 12th term
7+2=9
1+3+5+7+9
9+2=11
1+3+5+7+9+11
11+2=13
1+3+5+7+9+11+13
13+2=15
1+3+5+7+9+11+13+15
15+2=17
1+3+5+7+9+11+13+15+17
17+2=19
1+3+5+7+9+11+13+15+17+19
19+2=21
1+3+5+7+9+11+13+15+17+19+21
21+2=23
1+3+5+7+9+11+13+15+17+19+21+23
So 23 is the 12th term
Answer:
q = 26
Step-by-step explanation:
Given the point (3, q ) lies on the line then the coordinates satisfy the equation.
Substitute x = 3, y = q into the equation
q = 8(3) + 2 = 24 + 2 = 26
Here is your answer, you just count to 10... Simple as that.
Answer:
48
Step-by-step explanation:
(264 in)/(5.5 in/piece) = (264/5.5) pieces = 48 pieces
_____
Division is the usual shortcut for repeated subtraction. You could subtract 5.5 from 264 until you get to zero. You would have to do 48 subtractions. It is easier to divide 264 by 5.5 to see how many times it goes.