Recall the ideal gas law:
<em>P V</em> = <em>n R T</em>
where
<em>P</em> = pressure
<em>V</em> = volume
<em>n</em> = number of gas molecules
<em>R</em> = ideal gas constant
<em>T</em> = temperature
If both <em>n</em> and <em>T</em> are fixed, then <em>n R T</em> is a constant quantity, so for two pressure-volume pairs (<em>P</em>₁, <em>V</em>₁) and (<em>P</em>₂, <em>V</em>₂), you have
<em>P</em>₁ <em>V</em>₁ = <em>P</em>₂ <em>V</em>₂
(since both are equal to <em>n R T </em>)
Solve for <em>V</em>₂ :
<em>V</em>₂ = <em>P</em>₁ <em>V</em>₁ / <em>P</em>₂ = (104.66 kPa) (525 mL) / (25 kPa) = 2197.86 mL
Answer:
60+80+x=180
Step-by-step explanation:
__ + __ + __ = __ fill in the blanks
if 60, 80, and y have a sum of 180, the equation is 60+80+x=180
Answer:
C(3,-4), r=4*sqrt(2)
Step-by-step explanation:
C(p, q)
x^2+y^2+dx+ey+f=0
p=-d/2, q=-e/2, r^2=p^2+q^2-f
x^2+y^2 - 6x+8y-7=0
p=-(-6)/2=6/2=3
q=-8/2=-4
r^2=3^2 +(-4)^2+7
r^2=9+16+7
r^2=32
r=sqrt(32)
r=sqrt(16*2)
r=4*sqrt(2)
About 100. (Im not quite sure)
Answer:
10+8x=y
Step-by-step explanation:
The 10$ is added on because it's a one time exchange and the 8 is multiplied by the x because for every hour you add 8$ to the price and y is the total price at the end depending on x.