Answer: Natural selection is one of the forces of evolution and the enviroment where the species lives is the selection agent. For example, suppose a mosquitoes population in a environment free from insecticides, in this environment there's a high frequency of non-resistant mosquitoes because the environment is not exerting any pressure on the resistence trait. But when the environment changes and we use a insecticide upon the mosquitoes population, the populations changes because the non-resistant ones die but those resistant survive and beggin to reproduce more effectively. That's natural selection, differences in survival and reproduction between individuals with different phenotypes (traits) and this differences depend of environmental changes.
Answer:
The correct answers are option A. "tethering proteins to the cell cortex", B. "using barriers such as tight junctions", C. "tethering proteins to the extracellular matrix", D. "forming a covalent linkage with membrane lipids", E. "tethering proteins to the surface of another cell"
Explanation:
According to the fluid-mosaic model, the components of cell membranes are in constant movement forming a barrier to avoid unwanted exterior component internalization and to avoid the loss of precious internal components. This constant movement could cause that proteins move across the plasma membrane. But, this is avoided by several mechanisms including:
A. Tethering proteins to the cell cortex. The cell cortex is a rigid structure made of actin and actomyosin. Proteins found in the plasma membrane are tethered to this structure to restrict their movement.
B. Using barriers such as tight junctions. Tight junctions are barriers found in epithelia made of claudin and occludin proteins. These barriers are impenetrable, which avoid the movement of proteins in the cell membrane.
C. Tethering proteins to the extracellular matrix. The extracellular matrix is made of several proteins and macromolecules that provide a structural and biochemical support to cells that are nearby. Proteins could be tethered to this rigid structure as well.
D. Forming a covalent linkage with membrane lipids. The proteins in the cell membrane that form a covalent linkage with membrane lipids are known as lipid-anchored proteins, or lipid-linked proteins.
E. Tethering proteins to the surface of another cell. When cell-cell communication take place it is possible that proteins in the cell membrane got tethered to the surface of the other cell.
Answer:
the answer is A (or #1) because it is still testable but only because we haven't discovered everything yet
<span>Naturally occurring in both humans and bacteria and functions in DNA replication. The process of DNA Replication is extremely complex. Especially in humans, and needs specific molecules, like ligase, to be done. This molecule can be found in other species too.</span>