You can calculate them out and check which one is the most accurate
so if one of the choices was 1/3 of 50, then you would do:
1/3 in the calculator (should be 0.333...) times 50
And you can compare it with the EXACT number, which is:
0.25*53=13.25
This way you can test all the options
Answer:
yjyjytjyjtyjyjtyjtyjyhjyjnfrhjnrthj
Step-by-step explanation:
Expand and simplify
(x-3) (x-3) +2(x-3) -8=0
(x-3+2)(x-3)-8=0
(x-1)(x-3)-8=0
x^2 -4x +3-8=0
x^2 - 4x -5=0
x^2 -5x +x-5=0
x(x-5)+x-5=0
(x+1)(x-5)=0
x= - 1, 5
Answer:
The probability that the sample mean would differ from the population mean by more than 2.6 mm is 0.0043.
Step-by-step explanation:
According to the Central Limit Theorem if we have a population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the distribution of the sample means will be approximately normally distributed.
Then, the mean of the distribution of sample mean is given by,

And the standard deviation of the distribution of sample mean is given by,

The information provided is:
<em>μ</em> = 144 mm
<em>σ</em> = 7 mm
<em>n</em> = 50.
Since <em>n</em> = 50 > 30, the Central limit theorem can be applied to approximate the sampling distribution of sample mean.

Compute the probability that the sample mean would differ from the population mean by more than 2.6 mm as follows:


*Use a <em>z</em>-table for the probability.
Thus, the probability that the sample mean would differ from the population mean by more than 2.6 mm is 0.0043.
Answer:
$20.00
Step-by-step explanation:
I took a test and got it correct.