Answer:
Step-by-step explanation:
Given that there is a function of x,
![f(x) = 2sin x + 2cos x,0\leq x\leq 2\pi](https://tex.z-dn.net/?f=f%28x%29%20%3D%202sin%20x%20%2B%202cos%20x%2C0%5Cleq%20x%5Cleq%202%5Cpi)
Let us find first and second derivative for f(x)
![f'(x) = 2cosx -2sinx\\f"(x) = -2sinx-2cosx](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%202cosx%20-2sinx%5C%5Cf%22%28x%29%20%3D%20-2sinx-2cosx)
When f'(x) =0 we have tanx = 1 and hence
a) f'(x) >0 for I and III quadrant
Hence increasing in ![(0, \pi/2) U(\pi,3\pi/2)\\](https://tex.z-dn.net/?f=%280%2C%20%5Cpi%2F2%29%20U%28%5Cpi%2C3%5Cpi%2F2%29%5C%5C)
and decreasing in ![(\pi/2, \pi)U(3\pi/2,2\pi)](https://tex.z-dn.net/?f=%28%5Cpi%2F2%2C%20%5Cpi%29U%283%5Cpi%2F2%2C2%5Cpi%29)
![x=\frac{\pi}{4}, \frac{3\pi}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%2C%20%5Cfrac%7B3%5Cpi%7D%7B4%7D)
![f"(\pi/4)](https://tex.z-dn.net/?f=f%22%28%5Cpi%2F4%29%20%3C0%20and%20f%22%283%5Cpi%2F4%29%3E0)
Hence f has a maxima at x = pi/4 and minima at x = 3pi/4
b) Maximum value = ![2sin \pi/4+2cos \pi/4 =2\sqrt{2}](https://tex.z-dn.net/?f=2sin%20%5Cpi%2F4%2B2cos%20%5Cpi%2F4%20%3D2%5Csqrt%7B2%7D)
Minimum value = ![2sin 3\pi/4+2cos 3\pi/4 =-2\sqrt{2}](https://tex.z-dn.net/?f=2sin%203%5Cpi%2F4%2B2cos%203%5Cpi%2F4%20%3D-2%5Csqrt%7B2%7D)
c)
f"(x) =0 gives tanx =-1
![x= 3\pi/4, 7\pi/4](https://tex.z-dn.net/?f=x%3D%203%5Cpi%2F4%2C%207%5Cpi%2F4)
are points of inflection.
concave up in (3pi/4,7pi/4)
and concave down in (0,3pi/4)U(7pi/4,2pi)