Answer:
the angle between their paths is <em>100.8°</em>
Step-by-step explanation:
From the given information, you can construct a triangle, just like the one in the figure.
We will use the <em>Cosine Rule</em> which is:
c² = b² + a² - 2 b c cos(θ)
where
- c = 16 miles
- b = 8 miles
- a = 12 miles
Therefore,
2 b c cos(θ) = b² + a² - c²
cos(θ) = (b² + a² - c²) / 2 b c
θ = cos⁻¹( (b² + a² - c²) / (2 b c) )
θ = cos⁻¹( (8² + 12² - 16²) / 2(8)(16) )
<em>θ = 100.8°</em>
<em></em>
Therefore, the angle between their paths is <em>100.8°</em>
Answer:
125 is the value of the question
Answer:
To make one batch of fried rice you'd need to pay $2.13
Step-by-step explanation:
Answer:
c. 25
Step-by-step explanation:
100/12 = 8.3
8.3 × 3 = 24.9
rounded up is 25
Answer:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Step-by-step explanation:
The median separates the upper half from the lower half of a set. So 50% of the values in a data set lie at or below the median, and 50% lie at or above the median.
The first quartile(Q1) separates the lower 25% from the upper 75% of a set. So 25% of the values in a data set lie at or below the first quartile, and 75% of the values in a data set lie at or above the first quartile.
The third quartile(Q3) separates the lower 75% from the upper 25% of a set. So 75% of the values in a data set lie at or below the third quartile, and 25% of the values in a data set lie at or the third quartile.
The answer is:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).