Annually The amount after 10 years = $ 7247.295
quarterly compound after 10 years = $7393.5
Continuously interest =$7,419
Given:
P = the principal amount
r = rate of interest
t = time in years
n = number of times the amount is compounding.
Principal = $4500
time= 10 year
Rate = 5%
To find: The amount after 10 years.
The principal amount is, P = $4500
The rate of interest is, r = 5% =5/100 = 0.05.
The time in years is, t = 10.
Using the quarterly compound interest formula:
A = P (1 + r / 4)4 t
A= 4500(1+.05/4)40
A= 4500(4.05/4)40
A= 4500(1.643)
Answer: The amount after 10 years = $7393.5
Using the Annually compound interest formula:
A = P (1 + r / 100) t
A= 4500(1+5/100)10
A= 4500(105/100)10
Answer: The amount after 10 years = $ 7247.295
Using the Continuously compound interest formula:
e stands for Napier’s number, which is approximately 2.7183

A= $2,919
Answer: The amount after 10 years = $4500+$2,919=$7,419
More details :brainly.com/question/13307568
#SPJ9
Answer:
89 rooms should be set for early book customer
Step-by-step explanation:
According to the given data we have the following:
OVERAGE(CO) = 200
SHORTAGE(CS) = 500
In order to calculate how many rooms should be set for early book customer we would have to use the following formula:
OPTIMAL BOOKING = MEAN + (Z * STDEV)
MEAN = 75
STDEV = 25
SERVICE LEVEL= CS / (CS + CO) = 500 / (500 + 200) = 0.7143
Z VALUE FOR 0.7143 = 0.57
OPTIMAL BOOKING = 75 + (0.57 * 25) = 89
89 rooms should be set for early book customer
The subtracton property of equality allows you to subtract the same amount from both sides of an equation without changing the truth of the equation.
Answer:
See Explanation
Step-by-step explanation:
No trapezoid is attached; so, I will solve on a general note
The area of a trapezoid is:

Using the attached image as a point of reference;
The parallel sides are: AD (6cm) and BD (12cm)
The height is 4cm
So, the area is:


