Answer:
A ∩ B = {1, 3, 5}
A - B = {2, 4}
Step-by-step explanation:
The given problem regards sets and set notation, a set can simply be defined as a collection of values. One is given the following information:
A = {1, 2, 3, 4, 5}
B = {1, 3, 5, 6, 9}
One is asked to find the following:
A ∩ B,
A - B
1. Solving problem 1
A ∩ B,
The symbol (∩) in set notation refers to the intersection between the two sets. It essentially asks one to find all of the terms that two sets have in common. The given sets (A) and (B) have the values ({1, 3, 5}) in common thus, the following statement can be made,
A ∩ B = {1, 3, 5}
2. Solving problem 2
A - B
Subtracting two sets is essentially taking one set, and removing the values that are shared in common with the other set. Sets (A) and (B) have the following values in common ({1, 3, 5}). Thus, when doing (A - B), one will omit the values ({1, 3, 5}) from set (A).
A - B = {2, 4}
Answer:

Step-by-step explanation:
step 1
Find the radius of the circle
we know that
The circumference of a circle is equal to

we have


substitute the values



step 2
Find the area of the circle
The area of the circle is equal to

substitute the values


answer = the elder bother is 17 and the younger one is 15
constructive odd integers= 15 and 17
17×15= 255
255+38 = 293
Square root of 293 = 17
Answer:
x^2 - x^3 - 3x^2y - 3xy^2
Step-by-step explanation:
x^3 +y^3 - (x + y)^3
Expand the expression
x^2 + y^3 - (x^3 + 3x^2y + 3xy^2 +y3)
Remove the parentheses
x^2 +y^3 -x^3 -3x^2y -3xy^2 - y^3
Remove the opposites
Answer:
x^2 - x^3 - 3x^2y - 3xy^2
Hope this Helps!