I believe you would do 2 times 3, which gives you 6. 3 is for the number of coin tosses, and 2 is the number of sides of a coin.
Answer:
1
Step-by-step explanation:
To answer this question, we need to that any number (except zero) raised to power 0 is equal to 1. With that in mind, let's solve this:
2y^0 - (3y)^0
= 2(1) - (1)
= <u>1</u>
<em>N</em><em>o</em><em>t</em><em>e</em><em>:</em><em> </em><em>2</em><em>y</em><em>^</em><em>0</em><em> </em><em>=</em><em> </em><em>2</em><em>(</em><em>y</em><em>^</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em>(</em><em>1</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>w</em><em>h</em><em>e</em><em>r</em><em>e</em><em>a</em><em>s</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>2</em><em>y</em><em>)</em><em>^</em><em>0</em><em> </em><em>=</em><em> </em><em>1</em>
1. No answer ( may be due to incorrect question)
2. x = -3
y = 4
3. x= 4
y = 2
4.x = -63/40
y= -19/20
Step 1
Multiply equation 1 by the coefficient of x in equation 2
Multiply equation 2 by the coefficient of x I'm equation 1
(after completing this step you will derive equation 3 and 4 )
Step 2
Subtract equation 4 from equation 3
Step 3
Divide both sides of the equation by the coefficient of y
Step 4
substitute your value for y in equation 1 or 2
(after this you will derive the values of x)
Note : This method is for the Elimination of x
I hope it helps