1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
3 years ago
15

“encontrar la integral indefinida y verificar el resultado mediante derivación”

Mathematics
1 answer:
Oliga [24]3 years ago
4 0

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

You might be interested in
H(x) = x -2<br> g(x) = 2x² – 3x<br> Find h(g(-2))
emmasim [6.3K]

Answer:

h[g(-2)] = 12

Step-by-step explanation:

hope this helps

6 0
3 years ago
Read 2 more answers
F(x)=x+3 , G(x)=x^2-2<br> (F/G)(-1)-G(3)
trapecia [35]

f(x)=x+3;\ g(x)=x^2-2\\\\\left(\dfrac{f}{g}\right)(-1)-g(3)=?\\\\\left(\dfrac{f}{g}\right)(x)=\dfrac{f(x)}{g(x)}\\\\g(3)=3^2-2=9-2=7\\\\f(-1)=-1+3=2\\\\g(-1)=(-1)^2-2=1-2=-1\\\\\left(\dfrac{f}{g}\right)(-1)-g(3)=\dfrac{2}{-1}-7=-2-7=-9

7 0
3 years ago
Order from least to greatest 0.5 0.41 3/5
FinnZ [79.3K]
Least. 0.41, 0.5, 3/5 Greatest
4 0
4 years ago
Read 2 more answers
Can you guys pls help me out
34kurt

Answer:

answer C

i think

hope this helps

8 0
3 years ago
Read 2 more answers
What were the three parts to Hamilton's financial plan ?
earnstyle [38]
The paramount problem facing Hamilton was a huge national debt. He proposed that the government assume the entire debt of the federal government and the states. His plan was to retire the old depreciated obligations by borrowing new money at a lower interest rate.
7 0
3 years ago
Other questions:
  • What is the volume of a cylinder with base radius 2
    11·1 answer
  • PLEASE HELP!!!!!!!!!!!!! (15 points)
    6·2 answers
  • A rectangular swimming pool measures 50 meters in length and 25 meters in width. Using a scale of 1 centimeter represents 5 mete
    13·1 answer
  • . [15 points] Alex is at the northernmost point of a circular parking lot with radius 26 feet. Dylan stands 22.4 feet west and 2
    12·1 answer
  • Why might you need to use the addition or subtraction property of equality more than once after you have used the distributive p
    15·1 answer
  • 5% of 220 = plz i have no time
    12·2 answers
  • Pls hurry I have to turn this in rn
    11·1 answer
  • PLEASE HELP WITH THIS I NEED IT ASAP!!!!!!!!!
    13·1 answer
  • The ships kitchen stocks 1 3/5 quarts of ice cream for every 1/4 cake. There are 10 cakes in the kitchen. How many quarts of ice
    10·1 answer
  • 1.) A number has 7 tens and 3 more ones than tens. What<br> is the number?<br> be
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!