Answer:
Atomic number of this isotope = 77
Explanation:
Given that,
Mass number = 193
No of neutrons = 116
We need to find the atomic no of this isotope.
We know that,
Atomic mass = No of protons + No. of neutrons
Also, atomic no = no of protons
So,
Atomic mass = atomic no + No. of neutrons
⇒ Atomic no = Atomic mass - no of neutrons
Atomic no = 193 - 116
Atomic no = 77
Hence, 77 is the atomic no of the isotope.
The average atomic mass of Boron: 10.431 amu
<h3>Further explanation
</h3>
Isotopes are atoms whose no-atom has the same number of protons while still having a different number of neutrons.
So Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
In determining the mass of an atom, as a standard is the mass of 1 carbon-12 atom whose mass is 12 amu
Mass atom X = mass isotope 1 . % + mass isotope 2.% + ...
The average atomic mass of boron :

Answer:
23.8g
Explanation :
Convert 2.0M into mol using mol= concentration x volume
2.0M x 0.1L (convert 100mL to L since the units for M is mol/L)
= 0.2 mol
We can now find grams by using the molar mass of KBr
=119.023 g/mol (Found online) webqc.org
but can be be calculated by using the molecular weight of K and Br found on the periodic table
We can now calculate the grams by using grams=mol x molar mass
119.023g/mol x 0.2mol
= 23.8046 g
=23.8g (rounded to 1decimal place)
0.125 g=(0.125 g)(1000 mg/1g)=125 mg.
Then, we need 125 mg of ampicillin.
5 ml of liquid suspension contains 250 mg of ampicilling , therefore:
5 ml----------------250 mg of ampicilling
x--------------------125 mg of ampicilling
x=(5 ml * 125 mg of ampicilling) / 250 mg of ampicilling=2.5 ml
Answer: we require 2.5 ml
The correct answer is actually
B) energy that flows from warmer objects to cooler objects.
because temperature is a measure of the average amount of energy possessed by an object due to the random motions of its particles. Heat is the energy that flows from warmer objects to cooler objects. Heat cannot flow in the opposite direction.