Answer:
The weight of 3.45 moles of carbon dioxide has been 151.8 grams.
Moles can be calculated as the mass of solute present with respect to the molecular mass of the solute.
Moles can be expressed as:
Moles = \rm \dfrac{weight}{molecular\;weight}
molecularweight
weight
The molecular weight of carbon dioxide has been 44 grams/mol.
The given moles of carbon dioxide = 3.45 moles.
3.45 mol = \rm \dfrac{weight}{44\;g/mol}
44g/mol
weight
Weight of carbon dioxide = 3.45 \times× 44 grams
Weight of carbon dioxide = 151.8 grams.
The weight of 3.45 moles of carbon dioxide has been 151.8 grams.
Answer:
90 °C
Explanation:
First, we must know the specific heat capacity of water, which is defined as the energy required to heat 1 gram of water by one degree Celsius. The specific heat capacity of water is 1 cal·g⁻¹°C⁻¹.
The equation we will use is Q = mcΔt, where Q is the heat energy, m is the mass, c is the specific heat capacity, and Δt is the temperature change. We will rearrange the equation to solve for Δt and substitute the values:
Δt = Q / (mc) = (90 kcal)(1000 cal/kcal) / (1 kg)(1000 g/kg)(1 cal·g⁻¹°C⁻¹) = 90 °C
Answer:
1 mole CO2 = 44g i.e.by the complete combustion of 12g of carbon, 44g of CO2 is produced.
Explanation:
the answer is,, made of three layers, has a terry layer, has a solid outer layer. Im 100% sure.