The system is isothermal, so we use the formula:
(delta)G = (delta)H - T (delta) S
Plugging in the given values:
(delta)G = -220 kJ/ mol - (1000K) (-0.05 kJ/mol K)
(delta)G = -170 kJ/mol
If we take a basis of 1 mol, the answer is
D. -170 kJ
Can you please give me more details so I can help you
Na3PO4*12H2O + BaCl2*2H2O = Ba3(PO4)2 + NaCl + H2O
add barium chloride to your Na3PO4.12H2O a white precipitate of Ba3(PO4)2 will be formed wrt salt(NaCl) and water(H20) if Na3PO4.12H2O. will be there.
Answer:the pH is 12
Explanation:
First We need to understand the structure of trimethylamine
Due to the grades of the bond in the nitrogen with a hybridization sp3 is 108° approximately, then is generated a dipole magnetic at the upper side of the nitrogen, this dipole magnetic going to attract a hydrogen molecule of the water making the water more alkaline
C3H9N+ H2O --> C3H9NH + OH-
![k=\frac{[C3H9NH]*[OH-]}{[C3H9N]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BC3H9NH%5D%2A%5BOH-%5D%7D%7B%5BC3H9N%5D%7D)
Then:
The concentration of the trimethylamine is 0.3 and the concentration of the ion C3H9NH is equal to the OH- relying on the stoichiometric equation. We could find the concentration of the OH- ion with the square root of the multiplication between k and the concentration of trimethylamine
[OH-]=
[OH-]=0.01
pH=14-(-log[OH-])
pH=12