1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
7

(w - 3)2 = -5w - 4 + 9w​

Mathematics
1 answer:
alukav5142 [94]3 years ago
4 0

Answer:

-1

Step-by-step explanation:

You might be interested in
Help me plz!!!!!!! test tomorrow
Alex

Answer:

The number of movies purchased is 5

Step-by-step explanation:

40.00 + 3.50 = 43.50

43.50 + 3.50 = 47.00

47.00 + 3.50 = 50.50

50.50 + 3.50 = 54.00

54.00 + 3.50 = 57.50

so if you add 3.50 to 40, 5 times you'll get 57.50

Hope it helped

7 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
PLEASE HELP PLEASE PLEASE
Alex

Answer:

The second one is d. 13

Step-by-step explanation:

Add what you know first. 110+57= 167. Then, subtract what the angle is all together with the answer from what you know. 180-167= 13. X= 13. I'm bad at explaining so I hope that was clear.

7 0
3 years ago
Suppose the population of a country in 1985 was 145 million. In 1995 it was 190 million. Use the formula P = Ae kt to setup an e
kondaur [170]

Answer: Option B is correct

The expression to estimate the population of the country in 2005 is given by

P=145e^{20k}\\

Step-by-step explanation:

Since we have given that

In 1985, there was population of 145 millions.

Similarly,

In 1995, there was a population of 190 million .

Use the formula,

P=Ae^{kt}\\

where A denotes the initial population and t denotes the number of years.

So, the expression becomes

P=145e^{20k}\\

∵ time period between 1985 to 2005 is 20 years.

So we take t=20 years.

So, the expression to estimate the population of the country in 2005 is given by

P=145e^{20k}\\

4 0
3 years ago
Read 2 more answers
Find the measure of x.<br> 101<br> 140<br> 153
allsm [11]
What are the answer choices
4 0
3 years ago
Read 2 more answers
Other questions:
  • The region bounded by y=(3x)^(1/2), y=3x-6, y=0
    9·1 answer
  • Rasheed needs to say $231 to earn money he plans to wash cars and charge $12 for car right to estimates Rasheed could use to det
    7·2 answers
  • How do I solve this.?
    15·2 answers
  • Use the sample data and confidence level to construct the confidence interval estimate of the population proportion p. n equals
    9·1 answer
  • What is 12 to the 2nd power
    8·1 answer
  • PLEASE HELP ME........​
    15·1 answer
  • I NEED HELP! HAVE TO TURN IN TODAY!
    7·1 answer
  • Simplify:<br> (4p3 + 6p2 – 7) – (8p? – 7 – 3p)
    11·1 answer
  • The probability that a school wins their first game in the national college basketball tournament is related to the rank they ha
    11·1 answer
  • There are 10 pens in a box. There are x red pens in the box. All the other pens are blue. Jack takes at random two pens from the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!