Answer: The amount of salt in the tank after 8 minutes is 36.52 pounds.
Step-by-step explanation:
Salt in the tank is modelled by the Principle of Mass Conservation, which states:
(Salt mass rate per unit time to the tank) - (Salt mass per unit time from the tank) = (Salt accumulation rate of the tank)
Flow is measured as the product of salt concentration and flow. A well stirred mixture means that salt concentrations within tank and in the output mass flow are the same. Inflow salt concentration remains constant. Hence:

By expanding the previous equation:

The tank capacity and capacity rate of change given in gallons and gallons per minute are, respectivelly:

Since there is no accumulation within the tank, expression is simplified to this:

By rearranging the expression, it is noticed the presence of a First-Order Non-Homogeneous Linear Ordinary Differential Equation:
, where
.

The solution of this equation is:

The salt concentration after 8 minutes is:

The instantaneous amount of salt in the tank is:
Answer:
The correct option is:
h = 1, k = 16
Step-by-step explanation:
y=4x^2-8x+20 =0
It is a quadratic formula in standard form:
ax^2+bx+c
where a = 4 , b = -8 and c=20
The vertex form is:
a(x − h)2 + k = 0
h is the axis of symmetry and (h,k) is the vertex.
Calculate h according to the following formula:
h = -b/2a
h= -(-8)/2(4)
h = 8/8
h = 1
Substitute k for y and insert the value of h for x in the standard form:
ax^2+bx+c
k = 4(1)^2+(-8)(1)+20
k = 4-8+20
k=-4+20
k = 16
Thus the correct option is h=1, k=16....
first off let's notice that the height is 11 meters and the volume of the cone is 103.62 cubic centimeters, so let's first convert the height to the corresponding unit for the volume, well 1 meters is 100 cm, so 11 m is 1100 cm.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=\stackrel{cm^3}{103.62}\\ h=\stackrel{cm}{1100} \end{cases}\implies 103.62=\cfrac{\pi r^2 (1100)}{3} \\\\\\ 3(103.62)=1100\pi r^2\implies \cfrac{3(103.62)}{1100\pi }=r^2 \\\\\\ \sqrt{\cfrac{3(103.62)}{1100\pi }}=r\implies \stackrel{cm}{0.00510199305952} \approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D%5Cstackrel%7Bcm%5E3%7D%7B103.62%7D%5C%5C%20h%3D%5Cstackrel%7Bcm%7D%7B1100%7D%20%5Cend%7Bcases%7D%5Cimplies%20103.62%3D%5Ccfrac%7B%5Cpi%20r%5E2%20%281100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%203%28103.62%29%3D1100%5Cpi%20r%5E2%5Cimplies%20%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%3Dr%5E2%20%5C%5C%5C%5C%5C%5C%20%5Csqrt%7B%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B0.00510199305952%7D%20%5Capprox%20r)
Answer:
Solving the inequality we get x>-9.33
The graph is shown in figure attached.
Step-by-step explanation:
We need to solve the inequality: 
Solving:

Switching the sides , reversing the inequality and Multiply 3 with terms inside the bracket

Subtract 6 from both sides

Divide both sides by -3 and inequality will be reversed

Solving the inequality we get x>-9.33
The graph is shown in figure attached.
Answer:
it's the 2nd or last one
Step-by-step explanation: