Answer:
3/14 chance first draw
Step-by-step explanation:
There are 14 jellybeans in all, you won’t be replacing so the probability will change with each draw.
Probability the 1st draw is red = 3/14.
Probability the 2nd draw is red = (3–1)/(14–1) = 2/13.
Probability the 3rd draw is red = (2–1)/(13–1) = 1/12.
3/14 x 2/13 x 1/12 = 6/2184 = 1/364 is approximately 0.27%, pretty rare.
Answer:
I think the answer is C but I'm not too sure so if it doesn't sound right don't click it cuz I don't want you get the answer wrong
Answer:
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

The proportion of infants with birth weights between 125 oz and 140 oz is
This is the pvalue of Z when X = 140 subtracted by the pvalue of Z when X = 125. So
X = 140



has a pvalue of 0.9772
X = 125



has a pvalue of 0.8413
0.9772 - 0.8413 = 0.1359
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Answer:
The width of the football field is 160 feet.
The length of the football field is 360 feet.
Step-by-step explanation:
Let w represent width of the football field.
We have been given that the length is 200 ft more than the width, so the length of the field would be
.
We are also told that the perimeter is 1,040 ft. We know that football field is in form of rectangle, so perimeter of field would be 1 times the sum of length and width. We can represent this information in an equation as:

Let us solve for w.






Therefore, the width of the football field is 160 feet.
Upon substituting
in expression
, we will get length of field as:

Therefore, the length of the football field is 360 feet.