n (AUB) = 59
Step-by-step explanation:
n(A U B) = n(A) + n(B) -n(A intersection B)
= 26+ 41- 8
= 59
1. 3x^1 + 8 - (2x^2 + 1).....distribute the negative thru the parenthesis
3x^1 + 8 - 2x^2 - 1....now combine like terms
-2x^2 + 3x^1 + 7
2. 5x^2 + 3x - 4 - (x^2 - 6x)...same thing..distribute
5x^2 + 3x - 4 - x^2 + 6x...combine like terms
4x^2 + 9x - 4
Step-by-step explanation:
Below is an attachment containing the solution.
Answer:
a = 8 cm
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Geometry</u>
Volume of a Cube Formula: V = a³
- <em>a</em> is a side length
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
<em>V</em> = 512 cm³
<u>Step 2: Find </u><em><u>a</u></em>
- Substitute in variables [Volume of a Cube Formula]: 512 cm³ = a³
- [Equality Property] Cube root both sides: 8 cm = a
- Rewrite: a = 8 cm