Answer:
Q1 = +2.50 x 10^-5C and Q2 = -2.50 x 10^-5C, r = 0.50m, F=?
Using Coulomb's law:
F = 1/(4πE) x Q1 x Q2/ r^2
Where
k= 1/(4πE) = 9 x 10^9Nm2/C2
Therefore,
F = 9x 10^9 x 2.50 x 10^-5 x2.50 x
10^-5/. ( 0.5)^2
F= 5.625/ 0.25
F= 22.5N approximately
F= 23N.
To find the direction of the force: since Q1 is positive and Q2 is negative, the force along Q1 and Q2 is force of attraction.
Hence To = 23N, attractive. C ans.
Thanks.
Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
Answer:
C
Explanation:
a series circuit would be an odd choice to power a battery or light a lamp when a direct would be much more efficient, and it's not converting types of energy, so C is the best possible answer
A fish pushes water backwards in order to move forward is a good example of Newton's 3rd Law.
Answer:
A) 10 m/s
Explanation:
We know that according to conservation of momentum,
m1v1 + m2v2 = m1u1 + m2u2 ..............(equation 1)
where m1 and m2 are masses of two bodies, v1 and v2 are initial velocity before collision and u1 and u2 are final velocities after collision respectively.
From the given data
If truck and car are two bodies
truck : m1 = 2000 Kg v1 = 5 m/s u1 = 0
car : m2 = 1000 kg v2 = 0 u2 = ?
final velocity of truck and initial velocity of car are static because the objects were at rest in the respective time.
substituting the values in equation 1, we get
(2000 x 5) + 0 = 0 + (1000 x u2)
u2 =
x 5
= 10 m/s
Hence after collision, car moves at a velocity of 10 m/s