The missing figures in the question can be seen below.
The average retirement age = 56.1 years ...
The number of a survey of retired citizen = 49
The standard deviation of the retirement age is 6 years.
Using alpha ∝ = 0.02
Answer:
Step-by-step explanation:
From the given options in the first question in the given information.
Type I error can take place when the researcher concludes the average retirement age <u>increased</u>, but the average retirement age <u>did not increase. </u>
A Type II error can take place when the researcher concludes that the average retirement age <u>did not increase</u>, but the average retirement age <u>increased. </u>
<u></u>
Recall that:
population mean = 56.1
sample size = 49
standard deviation = 6
At the level of significance of 0.02, using the Excel function (=Normsinv(0.02))
The critical value for z = 2.054
<u></u>
Standard error = ![\dfrac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
=![\dfrac{6}{\sqrt{49}}](https://tex.z-dn.net/?f=%5Cdfrac%7B6%7D%7B%5Csqrt%7B49%7D%7D)
= 6/7
= 0.857
The rejection region
= ![\mu +Z_{\alpha/0.02}*\sigma_x](https://tex.z-dn.net/?f=%5Cmu%20%2BZ_%7B%5Calpha%2F0.02%7D%2A%5Csigma_x)
= ![56.1+2.05374891*0.857](https://tex.z-dn.net/?f=56.1%2B2.05374891%2A0.857)
= 57.86
P(Type II error) is as follows:
![P(\overline X < 57.86| \mu = 57.4) = P( Z< \dfrac{\overline X - \mu }{\sigma_x})](https://tex.z-dn.net/?f=P%28%5Coverline%20X%20%3C%2057.86%7C%20%5Cmu%20%3D%2057.4%29%20%3D%20P%28%20Z%3C%20%5Cdfrac%7B%5Coverline%20X%20-%20%5Cmu%20%7D%7B%5Csigma_x%7D%29)
![= P( Z< \dfrac{57.86-57.4}{0.857})](https://tex.z-dn.net/?f=%3D%20P%28%20Z%3C%20%5Cdfrac%7B57.86-57.4%7D%7B0.857%7D%29)
![= P( Z< 0.537)](https://tex.z-dn.net/?f=%3D%20P%28%20Z%3C%200.537%29)
From z tables;
P (Type II error) = 0.704
P(Type II error) is as follows:
![P(\overline X < 57.86| \mu = 58.9) = P( Z< \dfrac{\overline X - \mu }{\sigma_x})](https://tex.z-dn.net/?f=P%28%5Coverline%20X%20%3C%2057.86%7C%20%5Cmu%20%3D%2058.9%29%20%3D%20P%28%20Z%3C%20%5Cdfrac%7B%5Coverline%20X%20-%20%5Cmu%20%7D%7B%5Csigma_x%7D%29)
![= P( Z< \dfrac{57.86-58.9}{0.857})](https://tex.z-dn.net/?f=%3D%20P%28%20Z%3C%20%5Cdfrac%7B57.86-58.9%7D%7B0.857%7D%29)
![= P( Z](https://tex.z-dn.net/?f=%3D%20P%28%20Z%3C-1.214%29)
From z tables;
P (Type II error) = 0.1124