1. You con solve the quadratic equation x^2+20x+100=50<span> by following the proccedure below:
2. Pass the number 50 from the right member to the left member. Then you obtain:
x^2+20x+100-50=0
</span><span> x^2+20x+50=0
</span><span>
3. Then, you must apply the quadratic equation, which is:
x=(-b±√(b^2-4ac))/2a
</span><span>x^2+20x+50=0
</span><span>
a=1
b=20
c=50
4. Therefore, when you substitute the values into the quadratic equation and simplify ir, you obtain that the result is:
-10</span>±5√2 (It is the last option).
Make a change of coordinates:


The Jacobian for this transformation is

and has a determinant of

Note that we need to use the Jacobian in the other direction; that is, we've computed

but we need the Jacobian determinant for the reverse transformation (from

to

. To do this, notice that

we need to take the reciprocal of the Jacobian above.
The integral then changes to

Answer:Your poopoo
Step-by-step explanation:
So what do you need us to do for you?
Answer:
no
Step-by-step explanation:
every triangles degrees equal 180.
78+21=99
180-99=81
the smaller triangle
21+80= 101
180-101=79
so the degrees are different