Answer:
B. Fluorescent lamps operate at a higher temperature than incandescent
Explanation:
Fluorescent lamps have a number of advantages over incandescent lamps which are given in the options given in A, C and D. The option available in B is a drawback, not an advantage. This is because it can give out and radiate more heat as a result of working at a higher temperature. Hence B option is correct.
Answer:
0.66c
Explanation:
Use length contraction equation:
L = L₀ √(1 − (v²/c²))
where L is the contracted length,
L₀ is the length at 0 velocity,
v is the velocity,
and c is the speed of light.
900 = 1200 √(1 − (v²/c²))
3/4 = √(1 − (v²/c²))
9/16 = 1 − (v²/c²)
v²/c² = 7/16
v = ¼√7 c
v ≈ 0.66 c
<span>An observation of the red shift of galaxies suggests that the universe is expanding. The correct option among all the options that are given in the question is the first option or option "a". I hope that this is the answer that you were looking for and it has actually come to your help.</span>
The net speed due west is = distance traveled in west / time taken = 120/0.5 = 240 km/h.
so airspeed due west is = net speed - speed of plane = 240-220= 20 km/h.
airspeed due south is = distance traveled in west / time taken= 20/0.5= 40 km/h.
the magnitude of the wind velocity = √[(airspeed due south )² + (airspeed due west)²] = √ ( 40^2 + 20^2 ) = 44.72 km/h
the angle of airspeed south of west is tan⁻¹ ( airspeed due south / airspeed due west )= tan⁻¹(40/20)=63.43 degrees.
if wind velocity is 40 km/h due south, her velocity should have 20 km/h component in north.
so component west = sqrt ( 220^2 - 40^2 ) = 216.33 km/h.
the angle north of west is arctan( 40/216.33 ) = 10.47 degrees.
M = 7.0 kg, the mass of the groceries
h = 1.2 m, the elevation of the bag of groceries
The bag of groceries moves a constant velocity over the 2.7-m room.
At constant velocity, there is no applied force, and the kinetic energy remains constant.
At an elevation of 1.2 m, there is an increase in PE (potential energy) given by
V = m*g*h
= (7.0 kg)*(9.8 m/s²)*(1.2 m)
= 82.32 J
The change in PE is equal to the work done.
Answer: 82.3 J