Answer:
A
Explanation:



hope it helped a lot
pls mark brainliest with due respect .
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
If<span> The </span>Sun<span> Went Out, How Long </span>Could<span> Life On </span>Earth<span> Survive? ... (which is actually physically impossible), the </span>Earth would stay<span> warm—at least ... from the planet's core </span>would<span> equal the</span>heat<span> that the </span>Earth<span> radiates into space, ... Photosynthesis </span>would<span> halt immediately, and </span>most<span> plants</span>would<span> die </span>in<span> a few </span>weeks<span>.</span>
Answer:
C1 + C2 = 30 parallel connection
C1 * C2 / (C1 + C2) = 7.2 series connection
C1 * C2 = 7.2 * (C1 + C2) = 216
C2 + 216 / C2 = 30 using first equation
C2^2 + 216 = 30 C2
C2^2 - 30 C2 + 216 = 0
C2 = 12 or 18 solving the quadratic
Then C1 = 18 or 12
Answer:
D.
Explanation:
A solar system is a collection of planets, their moons, and other objects in orbit around a central star.