Simplify the following expression below:
1 answer:
So, 4/3 - 2i
4/3 - 2i = 12/13 + i8/13
multiply by the conjugate:
3 + 2i/3 + 2i
= 4(3 + 2i)/(3 - 2i) (3 + 2i)
(3 - 2i) (3 + 2i) = 13
(3 - 2i) (3 + 2i)
apply complex arithmetic rule: (a + bi) (a - bi) = a^2 + b^2
a = 3, b = - 2
= 3^2 + (- 2)^2
refine: = 13
= 4(3 + 2i)/13
distribute parentheses:
a(b + c) = ab + ac
a = 4, b = 3, c = 2i
= 4(3) + 4(2i)
Simplify:
4(3) + 4(2i)
12 + 8i
4(3) + 4(2i)
Multiply the numbers: 4(3) = 12
= 12 + 2(4i)
Multiply the numbers: 4(2) = 8
= 12 + 8i
12 + 8i
= 12 + 8i/13
Group the real par, and the imaginary part of the complex numbers:
Your answer is: 12/13 + 8i/13
Hope that helps!!!
You might be interested in
B you can tell just by look x^2*x^2=x^4
Answer:
The answer is C. Rounding to the nearest whole number.
Step-by-step explanation:
Please mark me brainliest
Answer: um how can l help you with 4
Step-by-step explanation:
Answer:
free point 3.3.3 points sorry but I just need