Answer:
The product of given
is ![\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-32%20%5C%5C4%5C%5C20%5C%5C-36%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Consider the given product of a constant and a matrix.
![-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right]](https://tex.z-dn.net/?f=-4%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C-1%5C%5C-5%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
To do product we multiply scalar -4 with each element of the matrix given,
![-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right]= \left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right]](https://tex.z-dn.net/?f=-4%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C-1%5C%5C-5%5C%5C9%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%20%5Ctimes%208%20%5C%5C-4%20%5Ctimes%20-1%5C%5C-4%20%5Ctimes%20-5%5C%5C-4%20%5Ctimes%209%5Cend%7Barray%7D%5Cright%5D)
On solving further , we get,
![\left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right]=\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%20%5Ctimes%208%20%5C%5C-4%20%5Ctimes%20-1%5C%5C-4%20%5Ctimes%20-5%5C%5C-4%20%5Ctimes%209%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-32%20%5C%5C4%5C%5C20%5C%5C-36%5Cend%7Barray%7D%5Cright%5D)
Thus, the product of given
is ![\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-32%20%5C%5C4%5C%5C20%5C%5C-36%5Cend%7Barray%7D%5Cright%5D)
Answer:
x= -3, y=-6
Step-by-step explanation:
In the equation -5x-y=21, substitute y for 6+4x:
-5x- (6+4x) = 21
^^Solve for x.
X should come out to -3. To find y, plug -3 into either equation (-5x-y=21 or y=6+4x) and y should equal -6.
6 + 2 = 12
When 2 = 3
Change the equation to: 6 + 3
So,
6 + 3 = 9
You're answer is 9
Answer:
The correct option is option;
A. Flip
Step-by-step explanation:
When both sides of an inequality is divided by a negative number, it changes the sign of both numbers while their magnitude remain the same;
Therefore, if the right hand side of the inequality is lesser than the left hand side, when the signs of the left and right hand sides of the inequality changes after a division , by a negative number, we have;
The smaller right hand side of the inequality will then have a lesser negative magnitude than the left hand side of the inequality with a higher negative value and the left hand side (with the higher negative value) becomes lesser than the right and therefore, the symbol (sign) of the inequality is flipped
Therefore, when you divide both sides of an inequality by a negative number, you need to <u>flip</u> the inequality symbol.